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Abstract ''''

N points in a square of area A may be sorted according t their images under

a spacefilling mapping to give a tour of length at most If the points

are statistically independent under a smooth distribution, with N large, then

the tour will be roughly 25% longer than optimum (and a simple enhancement

reduces this to 15%). The algorithm is easily coded: a complete BASIC program

is included in the appendix. Since the algorithm consists essentially of

sorting, points are easily added or removed. Our method may also be used

with simple dynamic programming to solve TSP path problems.
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1. Introduction

The travelling salesman problem (TSP) is to construct a circuit of minimum

total length that visits each of N given points. Even in the plane, this problem

NP-complete t5]. Karp (41 has given an asymptotically efficient heuristic, but

it is difficult to code and its effort has a large constant factor. Bentley and

Saxe [2] gave an efficient implementation of the nearest neighbor heuristic,

but it requires a special data structure. We give a faster, simpler heuristic

that performs comparably.

2. Overview of the Method

Let

C {81 o< a< 11()

denote the unit circle, so that 8 c C represents a point on the circle 8

revolutions removed, clockwise, from a fixed reference point. Also let

S- {(x,y) 0 <x <1, o< y1) (2)

denote the unit square, and suppose that we are given a continuous mapping

from C onto S. Such mappings were first constructed by Peano and Hilbert in

the 1890's and are known as "spacefilling curves." (See, e.g., Robson [3,

pp. 451-4581.

Suppose, moreover, that limlP-1 (8) - *(0). Then, as 8 ranges from 0 to 1,

f(O) traces out a "tour" of all the points in S. Given N points in S to be

visited, a reasonable atrategy is to sequence them as they appear along the space-

filling curve. In short, we sequence them according to their inverse image

under.
_ _ 1*
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The specific form of 41 is not essential to our presentation at this

time, and isdeferred to Section 3. We need only two properties:

(P1) An inverse image of * can be easily computed. Specifically,

if x and y have k-bit binary representations, then a 8 satisfying (xy) = (- )

may be computed in O(k) operations. Note that although many such 8 may exist,

we must compute only one.

(P2) There is a concave function f(-) on (0,1], with f(0) = 0 and

f(A) = f(l-A), such that

II *(e) - ~(e') j[ cf(jO-6'j) (3)

where l " j denotes the metric on S with respect to which the tour is to

be ainimized.

3. Routing Problems in the Circle

The basic idea in our approach is to solve routing problems in C rather

than S, taking as the distance between two points in C the upper bound f(l-8' f)

on the distance between their images under *. The problem in C has a great

deal of structure, attributable to the concavity of f:

Proiosition 1: (Triangle Inequality) Let e 2 _ 83 . Then fe2-81 ) + "83-6 2)

> f(e 3- e .e

Proposition 2: (Crossing Elimination) Let e1 _ 82 C 83 _ 04. Then

(i) f(e3-e1) + f(O4- 2)_ f(e 2 -e1 ) + f(o 4 -03 )

(ii) f(e8-0) + f( 4-e2) > f(e 3 -e z) + f(e-e)

Proofs: We appeal to the following standard inequality for concave functions:

L f(a) + f(d) i f(?j) + f(c) if a <b,c; b,c <.d; a + d b + c.

To prove Proposition 1, let a O, b 2- , € - C 3 -e 2, and d 03  1.

I
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To prove Proposition 2 (1), let a e2 - e ,  - -e , c - 1 - (e4 -

d - 1 - (84 8 3), and recall that f(A) - f(l-&). The proof of part (ii) is

similar. 0

Remark: Our metric is more general than je-e', and the triangle inequality

will usually be a strict inequality[

It follow* from these propositions that an optimal tour on C, under

metric f, is obtained by visiting the points in a sequence from smallest e

to largest 8.

Variations of the TSP may also be easily solved on C. For example, if

all points are to be visited starting at 8 and ending at e , 8 < 8 , then

we know that all points between e and 8 must be visited in an increasing

sequence, the remaining points must be visited in decreasing sequence from

6 to 0 and then fros 1 to 8 . The optimal interleafing of these two sequences

2
is obtained in 0(1 ) operations, by dynamic programing. The TSP path problem

with one free endpoint t similarly solvable.

Note th4t, once the optimal tour has been obtained for any set of points

on C, it has been obtained for any subset (not necessarily consecutive) of those

points.

4. The SpacefillinA Curve

The approach outlined in Section 2 is valid for any spacefilling curve

" satisfying (P1) and (P2). We now describe one such curve for which the

bound (3) is particularly tight. This curve is recursively defined by dividing

S into four .identical subequares, constructing a curve that fills each sub-

" square, and joining them at the center of S (see Figure 1). The intuition

behind this definition is to join a point with its iomadiate neighbors before

[
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proceeding to a new region. In this respect it resembles the pfrtitiong,

algorithm of Karp [4].

In order to translate this idea into a mathematical equation, we first

number the vertices of S:

- qo = (0,0), q, - (0,1), q2 - (1,1), q3  (1,0) (4)

and adopt the convention:

[ (i/4) q i - 0,1,2,3 (5)

Accordingly, (O) will cover the subsquare of S whose outside vertex is qO

I when Ie-i/41 < 1/8 (or > 7/8 when i - 0). Each subaquare covering must be

rotated so that It. begins and ends at the center of S. Consequently we

I. may exptess recursively as the solution of

I. '$*(0) - 1[i(fract(4e + (6-1)/4)) + qi) K iut(40 + ) rod 4 (6)

Iiwhere the term j scales each subsquares, thk argument of fract(.) reorients it,

and +qj translates it to the desired position in S.

If we view (6) as a fixed point identity, p - T*, then T is seen to be a

ii contraction operator, and so there is a unique function * satisfying (6). more-

over T * 0 for any initial approximation j of 0. A sequence of approximations

. starting from (5) is shown in Figure 2.

The same argument may be carried out in reverse to show that there is a

L function *: S -o C such that (#(x,y)) - (xy). This function satisfies a con-

tracting recursive identity similar to (6), and is evaluated iteratively in

the same manner am *. Since this function is given explicitly as part of

[
___________.-- - ~ . . - -



Iithe algorithm in the appendix, we avoid repeating it here.
- This spacefilling curve satisFies (PI) and (P2) as we now show. Note

that (6) breaks the range of 6 into quarters to determine the first bit of

the.binary expansion of x and y. Each successive pair of bits in e corresponds

to a new bit for x and a new bit for y. Thus, it is c1tar that p satisfies (Pl).

1 For any 8,0', we may construct a square bf side at most 4/i-' i containing

i i(O) and y'), so f(4) - 4%.A, 0 < L < , in (P2), where H in (3) is under-

stood to be the Euclidean distance. We may improve this bound to

f (A) 2 vC/ 0 < A < It(7

The justification for (7) is too long to be given here.

This definition of q; is readily extended to d-dimensional space. Each

d bits of e then determine a single bit for each coordinate, and f(6) - 4 - rd

If the rectilinear metric is to be considered t f() - a-d /Ad; for the

sup norm metric, f(U) - 4

5. Performance Analysis

Computation Effort. Since our algorithm projects the given points onto C in a(kN)

operations (in view of. (Pl)), and .sorts them in 0(NlogN) operations, it requires

O(NlogN) operations to obtain the heuristic tour.

Coding; A short BASIC code, given in the appendix, demonstrates the

ease with which this algorithm may be implemented.

Worst-Case Analysis. Given N sorted points 81 ""8N' the tour length is

* bounded above by f( 1 f(ei' -1) . Since this e~ression Is concave

in 910...,0N, it achieves a maximum of Nf(11N). In view of (7), the heuristic

tour cannot exceqd 211 in length. Projected onto a square of area A, this implies

[ heuristic tour 4 2#% (8)



[ ~An interesting corollary is: optime& tour 2SA

Probabilistic Analysis. If the points are unifornly distributed in S, then

Ii they will be uniformly distributed on C as well, and so are approximated by

a Poisson process. Consequently, the expected tour length is bounded above

by N f Ne- f(x)dx = /VN. Because of the recursive nature of the algorithm,

it is easy to show that, in a square of area A,

heuristic tour- a constant, as N- (9)

in much the same sense that (optimal tour / NA) - .765; see Deardwood, Halton

and Hammerley[l]. We have estimated the parameter in (9) be .956, and so

* the heuristic tour will be roughly 25% over optimum when N is large. Interestingly

the ratio of heuristic tour to optimal tour does not depend on the points'

distribution - so long as it has bounded density. We have also shown that the

longest distance between successive points in the heuristic tour is bounded

above by 24AI) iogN, almost surely, as N - =; it may generally be found

between 1.1 /(A /9)iogN and 1.3VI(A/N) logN.

Optional Enhancement. An O(kNlogN) additional step can reduce the expected

ratio of 'heuristic tour to optimal tour to an estimated 1.1.5. Briefly, the

enhancement projects each point onto the boundary of its minimal containing

region and attempts to interchange its position on C with that of the inverse

image of the point on the opposite side of this boundary.

i.. 6. Conclusions

Our algorithm should prove useful in large applications because of its

spead,only O( log N), an order of magnitude faster than any other TSP

[heuristic comonly considered. It achieves this by the surprising tactic,
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I. .

of ignoring interpoint distances (there areO(NI)) t Is simplicity should

make it attractive for small problems as well. The heuristic tour it produces

has nice properties: points may be easily inserted or deleted (in 0(logN)

operations) without re-solving the entire problem, and the longest distance

between successive points on the tour tends to be small. (This is not true,

in general, for tours that are nearest neighbor, optimal, etc.) Moreover

the tour tends to be good with respect to a variety of metrics and for

points drawn from general (possibly unknown) distributicns. The algorithm

requires no real multiplications or square roots, and so should execute

quickly on microprocessor-based systems. The authors have even become

relatively proficient at solving small (up to 100 points) problems by

hand, graphically. Alternatively, the points and their images 9 may be

marked on index cards and placed in a shoebox. To produce a heuristic

tour of any subset of the points, locate their cards and perform a manual

sort.

MAN
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APPENDIX

The following BASIC program will compute a heuristic tour of N points

in a square of side S. The following remarks will help to interpret it.

Lines 50-100 compute the inverse image TH(I) of the point (X(I)/S,Y(I)./1)

in the unit square, taking into account only the first K-10 bits of the

coordinates' binary expansion. In the J-th iteration of line 70, the

IQ(J)-th quadrant of the present subsquare is selected as the next sub-

square to be examined. Lihes 110-220 perform a sort to identify the l-th

smallest value in TH as the ID(I)-th element of the array. Lines 150-180

will be executed N Flog Ni times. Variables whose names start with I-N

will contain integer values. This program may require simple modifications

to run under some versions of BASIC (e.g., eliminate variable dimensions

in 30).

I.
ii
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110 INPUT "NUMBER OF POINTS";N -Vj.f:KPF't(K-1)

20 INPUT "SIDE OF SQUAR";S :PRINNM E.r~ X, Y:"

1 30 DIM &$(N),X(N),Y(N),THI(N) lQ(K) iP-(N) IC(N)

40 FOR T-1 TO N :INPUT A$(I),X(I),I(I) :NEXI I

50 FOR 1TO N : KR=2*KP-.1

60 KX-INT(X(I)*KR!S) :KY=INT(Y(I)*KFK/S)f 70 FOR J-1 TO K :JX-INT(RX/KP): YITK/P

:KXm-2*(KXXKP*JX): KY-2*(KV-KF*JY)

:IQ(J)-JY+3*JX-2*JX*Jy- NEXT J

80 TIIK/
90 FOR J=K-l TO 1 STEP -1J T=T+(6-IQ(7))/4

T=T-INT(T) T=(3.5+T+I0(J))L4 :NEXT J

-100 TH(l)-T-INT(T) ID(T)-I :NENT I

110 M2-2 TH(O)=-1

120 M-M2 M2-M2*2 :IF M2<N THEN OTO 120

130. FOR 1=N TO N--f- STEP -1

140 Jl-I :J2-I-M :J3-0: 4-

*150 33=J3+1

160 IF J1<O THEN J1-0 ELSE IF J2<0 THEN j2-0

170 IF TH(ID(JI))>TH(ID(32)) THEN Ic(j3)=ID(J1)

jJ1-31-M2 ELSE IC(J3)=ID(J2) J2=J2-M2

180 IF 31>0 OR J2>0 THEN QOTO 150

1190 IF 33<-i THEN GOTO 220
200 FOR 3-1 TO J3: ID(J4)=IC(J) :J4-J4-M :NEXT 11I210 XEXT I
220 M2-M )4u'M2 :IF M>-1 THEN COTO 1301230 PRINT :PRINI "RANK","NAX.,E","X","tY","THEFTA"t

240 FOR I-1i TO N :J-ID(I)

.PRINT I,A$(J),X(J),Y(J),'H(J) NEXT I

1250 END
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